TYTON® DUCTILE IRON PIPE SYSTEMS FLANGE CLASS RRJ DN100-750

For Potable Water, Raw Water, Sewer and Aggresive Fluids

THE BENEFITS OF DUCTILE IRON

With allowable operating pressures beginning at 4.4MPa (PN44) Flange Class Ductile Iron Pipes are relied upon for heavy duty performance under extreme load.

FLANGE CLASS DUCTILE IRON

Flange Class (FLCL) TYTON Ductile Iron pipe is specially manufactured with thicker walls to allow machining and screw threading attachment of flanges.

Flanges are generally to AS 4087 Fig B5 (PN16) and Fig B6 (PN35) and are sealed using 3mm EPDM and 1.5mm fibre gaskets respectively.

Pipes are cast with a TYTON socket profile allowing them to be easily incorporated as an RRJ interface.

Wall thicknesses are equivalent to the superseded pipe class K12 and allow much higher-pressure ratings than PN 35.

Flanged pipe is used extensively in treatment plants, pump stations and above ground applications where ease of component removal is essential for maintenance or structural integrity is required. TYTON FLANGE CLASS pipe provides this capability most effectively.

TYTON XCEL

TYTON XCEL is synonymous with the introduction of pressure class DI Pipe into Australia. Efficiency gains and cost savings are achieved without sacrificing the time proven superior performance capabilities associated with ductile iron.

Lining Opions

The standard lining is a centrifugally spun cement mortar lining made up of Type SR (Sulphate Resisting) cement.

An additional Seal Coat applied to the cement lining surface is available as an option to inhibit the leaching of lime where very aggressive, soft waters of low hardness (total alkalinity <30mg/L) or high dissolved C02 are being conveyed.

For the conveyance of potable water, recycled water & raw water

TYTON XTREME

TYTON XTREME incorporates a highly wear resistant Calcium Aluminate Cement (CAC) mortar lining.

This lining protects the internal surface from corrosion, tuberculation and bacteriogenic acid attack when conveying aggressive fluids common in sewage and wastewater pipelines. Perfectly watertight & prevents root ingress.

For the conveyance of wastewater including:

- Gravity & Pressure Sewer effluent
- Domestic waste waters
- Mining slurries & process water
- Fluids between pH4 and pH12

TYTON XCEED

When it comes to highly aggressive fluids Polyurethane (PU) is the lining which simply exceeds all expectation.

TYTON XCEED's PU lining is applied in accordance with EN15655 and has an average thickness of 1500µm.

For the conveyance of potable water, wastewater & sewer including:

- Very soft water (hardness less than 1mg/L) combined with extremely long residence times
- Mineral water, i.e. water whose chemical specifications must remain unchanged between the pipeline inlet and outlet
- Aggressive conveyants including septic sewage, high CO2, chlorides, sulphates & brine
- Resistivity range of pH1-13

TYTON® DUCTILE IRON PIPE SYSTEMS FLANGE CLASS RRJ DN100-750

For Potable Water, Raw Water, **Sewer and Aggresive Fluids**

NOMINAL SIZE		Symbol	Units	100	150	200	225	250	300	375	450	500	600	750
KEY METRICS	Nominal pressure	PN	Nom	FLCL										
	Mean external diameter	Øy	mm	122	177	232	259	286	345	426	507	560	667	826
	Effective laying length	$L_{\rm e}$	m	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
	Joint defelection	۰	deg	3.5	3.5	3.5	3.5	3.5	2.5	2.5	2.5	2.5	2.5	1
UNLINED PIPE	Mean internal diameter	DI	mm	107	162	215	242	267	326	405	483	536	641	796
	Pipe barrel mass per metre	m _u	kg/m	18.8	28.2	42.1	497.2	58.8	71.3	98.4	129.4	143.3	186.9	271.2
	Pipe mass including socket	M_u	kg	107	178	237	297	329	440	553	723	868	1,165	1,607
SOCKET	Socket mass	S	kg	4.3	5.9	8.6	10.4	11.3	13.4	23.7	27.7	30.3	35.6	60.8
DI WALL THICKNESS	Nominal	t	mm	7.4	7.5	8.5	8.5	9.6	9.6	10.7	11.8	11.8	12.9	15.1
	Minimum	а	mm	6.0	6.0	7.0	7.0	8.0	8.0	9.0	10.0	10.0	11.0	13.0
CEMENT MORTAR LINED PIPE	Mean internal diameter	D _c	mm	98	153	206	233	258	317	396	474	527	632	785
	Nominal CML thickness	t _c nom	mm	5	5	5	5	5	5	5	5	5	5	6
	Minimum CML thickness	t _c min	mm	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.5
	Pipe barrel mass per metre	m _L	kg/m	22.3	33.5	49.2	55.2	67.7	82.2	112.0	145.7	161.3	208.5	304.0
	Pipe mass including socket and CML	ML	kg	131	197	289	325	397	482	662	858	950	1,224	1,793
THEORETICALLY RATED PRESSURES	Allowable operating pressure	AOP	MPa	14.48	9.82	8.71	7.78	8.06	6.65	6.04	5.63	5.09	4.70	4.48
	Maximum allowable operating pressure	MAOP	MPa	17.38	11.79	10.45	9.33	9.67	7.98	7.25	6.76	6.11	5.63	5.37
	Allowable site test pressure	ASTP	MPa	18.10	12.28	10.89	9.72	10.07	8.31	7.55	7.04	6.36	5.87	5.60
	Burst pressure	BURST	MPa	43	29	26	23	24	20	18	17	15	14	13
STRUCTURAL & HYDRAULIC PROPERTIES	Transform wall thickness	t,	mm	7.05	7.10	8.10	8.10	9.15	9.15	10.20	11.25	11.25	12.30	14.50
	Celerity of mean CML bore	С	m/s	1,322	1,272	1,248	1,229	1,232	1,197	1,176	1,160	1,138	1,119	1,107
	Barrel ring stiffness	S _D	kN/m/m	3,239	1,027	668	475	510	286	209	165	122	94	81
	Buckling pressure	Р	kPa	34,165	10,840	7,043	5,008	5,375	3,013	2,201	1,743	1,285	989	851
FREIGHT	Pipes (lined) per truck	P/T	n	180	110	82	68	60	46	36	24	24	12	8
	Kilos per truck	n x M _L	kg	23,620	21,653	23,710	22,109	23,821	22,173	23,835	20,592	22,796	14,688	14,347
WATER MASS	Mass of water contained in pipe	m _w	kg/m	8	18	33	43	52	79	123	177	218	314	484
MASS FULL	Mass of pipe full of water	$M_{\scriptscriptstyle T}$	kg/m	31	53	84	100	122	163	239	327	385	529	798
BENDING MOMENT AND FOS AGAINST FLEXURAL YIELD	Moment = wL²/8 for simply supported beam over ELL	M _B	kNm	1.22	2.11	3.35	3.97	4.85	6.51	9.52	13.04	15.34	21.06	31.81
	y = DE/2	у	mm	61	89	116	130	143	173	213	254	280	334	413
	I = n/64 (Do ⁴ -Di ⁴)	1	mm⁴	3.69E+ 06	1.18E+ 07	3.13E+ 07	4.40E+ 07	6.76E+ 07	1.20E+ 08	2.56E+ 08	4.82E+ 08	6.54E+ 08	1.22E+ 09	2.74E+ 09
	σ = My/I Note max M = 3wI ² /8	σу	MPa	60	47	37	35	31	28	24	21	20	17	14
	FOS = Yield stress / Working stress	FOS	ŋ	5.0	6.0	8.1	8.6	9.7	10.7	12.6	14.6	15.2	17.4	20.9

DISCLAIMER

All trademarks and logos are owned by The Reece Group. The words TYTON®, TYTON-LOK® and TYTON All traderilarias and logos are owned by the Reedes Godp. The words if Trong Town and Trong Town $trademarks\ within\ Australia\ and\ New\ Zealand.\ All\ other\ brand\ or\ product\ names\ are\ trademarks\ or\ registered$ marks of their respective owners.

Because we are continuously improving our products and services, The Reece Group reserves the right to change specifications without prior notice.

CERTICATIONS

AS/NZS2280 - Ductile Iron Pipes & Fittings AS4020 - Testing for use in contact with drinking water EN15655.1 - Polyurethane lining of pipes and fittings

